Theano / Tensorflow: Autoencoders, Restricted Boltzmann Machines, Deep Neural Networks, t-SNE and PCA.
What Will I Learn?
- Understand the theory behind principal components analysis (PCA)
- Know why PCA is useful for dimensionality reduction, visualization, de-correlation, and denoising
- Derive the PCA algorithm by hand
- Write the code for PCA
- Understand the theory behind t-SNE
- Use t-SNE in code
- Understand the limitations of PCA and t-SNE
- Understand the theory behind autoencoders
- Write an autoencoder in Theano and Tensorflow
- Understand how stacked autoencoders are used in deep learning
- Write a stacked denoising autoencoder in Theano and Tensorflow
- Understand the theory behind restricted Boltzmann machines (RBMs)
- Understand why RBMs are hard to train
- Understand the contrastive divergence algorithm to train RBMs
- Write your own RBM and deep belief network (DBN) in Theano and Tensorflow
- Visualize and interpret the features learned by autoencoders and RBMs
Includes:
- 5.5 hours on-demand video
- Full lifetime access
- Access on mobile and TV
- Certificate of Completion
No comments:
Post a Comment